|
§ 4. Запись/чтение данных в LPT порт. (Часть 1) Основы.
|
Итак, настало время написать простую программу, иллюстрирующую приемы чтения и записи данных в LPT порт. Пока напишем ее в консольном варианте, дабы на этапе понимания и разбора этой программы не пришлось "копаться" в дебрях кода под Windows (не переживайте, следующая статья будет посвящена как раз приложению c визуальным интерфейсом).
|
Краткая характеристика проекта: |
- работает под обоими семействами ОС Windows (9x и NT)
- позволяет читать и записывать данные в любой регистр LPT порта (если он эту возможность предусматривает)
- приложение консольное, для доступа к портам использует библиотеку inpout32.dll
|
|
Прежде чем двигаться дальше и писать программу, необходимо разобраться с LPT портом, посмотреть из чего он состоит и как нам воспользоваться им в своих целях. Если говорить на бытовом уровне, то можно сказать, что LPT порт это набор контактов, на которых мы можем установить напряжение 0 или +5 В (логическая 0 и 1) из программы или это может сделать внешнее устройство снаружи.
От автора
|
Объяснение и вправду ОЧЕНЬ бытового уровня :) Забавно спустя 5-6 лет перечитывать свое "творчество", которое сейчас вызывает улыбку.
|
Давайте разберемся, какими контактами мы можем оперировать, а какими нет. В этом нам поможет рисунок ниже (его рисовал не я, автор мне неизвестен. Но он уж больно хорош, я и сам им постоянно пользуюсь).
Из рисунка видно, что выводы порта можно разделить на четыре группы: это 'земляные' выводы. Они обозначены черным цветом (контакты 18-25). Все они соеденены между собой, поэтому для своих разработок в качестве земли можно использовать любой из них.
Красным цветом обозначены выводы так называемого регистра Data (контакты 2-9). Под регистром будем понимать (на бытовом уровне) объдинение группы контактов LPT порта. В регистре Data их 8 штук. Это самый толковый регистр - он позволяет нам как из программы, так и из внешнего устройства установить на его контактах лигическую 0 или 1, т.е. он двунаправленный. Именно его мы и использовали в нашей первой программе Port.exe - подключали светодиод ко 2-му выводу порта (как теперь видно, этот вывод принадлежит регистру Data, является его нулевым битом) и 25 выводу (земля), и спомощью программы управляли подачей напряжения на вывод 2 относительно земли. Чтобы обращаться к этому регистру, надо знать его адрес: 0x378 - в 16-ричной системе или 888 в десятичной.
|
На рисунке написано &H378 - это тоже самое что и 0x378, просто первое обозначение присуще языку Pasсal и ему подобным, мы же пишем на Си.
|
Опять вспоминая программу Port.exe, заметим, что обращались мы к регистру с помощью следующей функции _outp(Address, 0);, где переменная Address была предварительно определена как 888. Теперь понятно, что этим мы указывали функции _outp(), что мы хотим работать именно с регистром Data.
Продолжим рассмотрение порта. Осталось еще два регистра. Следующим будет регистр Status (контакты 10-13, 15). Это однонаправленный регистр. Управлять им можно только "снаружи", через внешнее устройство (имеется в виду изменять данные на нем; читать можно из любого регистра в любую строну). Он имеет адрес 0x379 - в 16-ричной системе или 889 в десятичной. И регистр Control (контакты 1, 14, 16-17). Он имеет всего 4 контакта и может управляться только программой. Его адрес: 890 в десятичной системе.
В итоге мы получили: |
- 8 двунаправленых контактов (регистр Data) - данные туда может записать и программа и внешнее устройство
- 5 однонаправленных контактов (регистр Status) - данные туда может записать только внешнее устройство
- 4 однонаправленных контакта (регистр Control) - данные туда может записать только программа
|
|
Вывод: у нас есть 17 выводов которыми мы можем управлять по своему усмотрению.
|
Теперь рассмотрим, а как происходит запись и чтение данных в регистры LPT порта, т.е. как нам установить на нужных выводах 0 или 1.
Запись/чтение данных в регистр Data
Итак, рассмотрим сразу практическую задачу. Хочу чтобы на выводе LPT порта под номером 3 (бит D1 регистра Data) была установлена логическая 1 (т.е. чтобы между ним и землей было +5 В) и на остальных выводах этого регистра (2,4-9 выводы порта) были нули. Пишем код:
int Address = 888;
int data = 2;
Out32( Address, data );
Я использовал функцию Out32() библиотеки inpout32.dll, будем привыкать к ней, т.к. дальнейшие примеры будем разбирать именно на этой библиотеке. Если этот код выполнить, то получится что на выводе порта 3 есть +5 В, а на 2,4-9 "висит" ноль. Как это получилось?
Начнем разбираться: первым параметром функции Out32() мы передаем число 888. Как вы уже знаете, это адрес регистра Data LPT порта. Теперь функция знает куда ей писать данные. Далее вторым параметром мы передаем число 2, т.е. значение для записи в порт. Прошу обратить внимание, что двоика в десятичной системе счисления. Что происходит далее? Для лучшей визуализации процесса, переводим число 2 из десятичной в двоичную систему счисления. Каждый разряд двоичного числа справо на лево записывается по порядку в регистр начиная с младшего разряда D0 (вывод 2 порта) и заканчивая старшим D7 (вывод 9). Если вы переведете число 2 из десятичной в двоичную систему счисленияи дополните число по 8 разрядов (по числу разрядов в регистре) то получите 00000010. Нулевой разряд двоичного числа - 0 (самую правый) записывается в D0, далее 1 записывается в D1. И так до конца, все 8 разрядов.
Ну что, устали немного пока прочитали? Сейчас станет понятнее. Давайте в регистр Data запишем число 245. Пишем код:
int Address = 888;
int data = 245;
Out32( Address, data );
Опять переводим 245 в двоичную систему счисления и справо на лево записываем разряды числа в соответсвующие биты регистра. В итоге получим, что на выводах LPT порта под номерами 2,4,6-9 присутствует напряжение +5 В, на выводах 3,5 - ноль.
Ну что, теперь я думаю, с записью данных в регистр Data мы разобрались. Надо отметить, что диапозон десятичных чисел, которые можно записать в регистр Data лежит в пределах от 0 до 255. Регистр он у нас 8-ми разрядный, значит максимальное число комбинации 0 и 1 на его выводах составляет 28-1=256-1=255.
Чтение данных
Теперь давайте считаем ранее записанные данные в порт, а именно узнаем текущий статс регистра Data. Мы хотим узнать, на каких выводах регистра Data сейчас высокий уровень напряжения, а на каких низкий. Помните, выше мы записали в порт число 245? Давайте его сейчас получим из порта. Пишем код:
int Address = 888;
int data;
data = Inp32( Address );
Inp32() - это функция для чтения данных из порта библиотеки inpout32.dll. Единственным параметром для нее является адрес того регистра, откуда мы хотим прочесть данные. На выходе она возвращает десятичное число, соответствующее текущему содержомому регистра. Выполнив этот код, переменная data будет содержать число 245. Что это значит? Чтобы разобраться, переводим число 245 из десятичной в двоичную и смело можем сказать что на выводах порта 2,4,6-9 сейчас +5 В а на выводах 3,5 0 В. (см. рисунок выше)
|
Как я уже упомянул выше, в регистр Data данные записать может и внешнее устройство. Однако рассмотрение этого вопроса пока оставим. Сначала, давайте полностью разберемся с базовыми операциями.
|
Запись/чтение данных в регистр Control
Теперь поуправляем регистром Control. Он однонаправленный, данные в него может записать только наша программа. Обратите внимание на несколько особенностей этого регистра. Во-первых, он содержит всего четыре рабочих вывода. Значит в него можно записать число в диапозоне от 0 до 24-1=16-1=15. Во-вторых, он имеет очень непрятную особенность: некоторые из его выводов инвертированы, т.е. если вы на этот вывод пишете 1, то на ней устанавливается 0. И наоборот, читаете 1, а на самом деле там 0. Поэтому, значение записываемых данных и читаемых данных не совсем очевидны. Приведу пример записи числа в регистр Control. Пишем код:
int Address = 890;
int data = 10;
Out32( Address, data );
И пример чтения:
int Address = 890;
int data;
data = Inp32( Address );
Запись/чтение данных в регистр Status
Наконец, добрались до регистра Status. Он однонаправленный, данные в него может записать только внешнее устройство, т.е. мы в программе можем только читать содержимое этого регистра. Причитав данные из Status, и переведя их в двоичное число, сразу довольно трудно понять что же реально творится с напряжениями на выходах этого регистра. Во-первых, он тоже имеет инвертированные выводы, а во-вторых рабочими являются биты под номерами 4-7, а 0-3 не используются, и следовательно число записывается довольно хитро.
Возникает вопрос, а как эти данные на нем установить? Довольно просто. В качестве внешнего устройства, пока, будете выступать вы. Выполните такой код.
int Address = 889;
int data;
data = Inp32( Address );
Вы получите некоторое число. Теперь возмите проводник и соедините им любой из земляных выводов порта (18-25) с каким-нибудь выводом регистра Status (10-13, 15), например с десятым. И снова выполните чтение. Вы получите другое число. Уберите проводник. Прочитав, получете исходное число. Как это работает? Исходно, на всех выводах этого регистра находится высокий уровень напряжения +5 В. Когда мы соеденили один из его выводов с землей, то на нем, соответственно, напряжение стало равным нулю, т.е. логический ноль. Можно попробовать замыкать и другие выводы регистра Status на землю, замыкать сразу несколько.
Следует заметить, что при таких опытах с регистром Status возникает не совсем понятная ситуация с другими выводами порта LPT. После первого замыкания выводов Status, начинают мигать выводы Data и Control. Это связано с тем, что порт LPT предназначен для подключения принтера, а выводы Status он использует, для того чтобы сообщить компьютеру некоторую служебную информацию. Изменения на выводах Status регестрирует системный драйвер операционной системы. Он же проводит и ответные действия, для нас наблюдаемые в виде периодического изменения состояния других выводов. Тут уж ни чего не поделаешь. Я обычно, просто в начале работы с портом далаю замыкание какой-нибудь линии регистра Status на землю и жду примерно минуту, пока драйвер не "утихомирится". После этого порт свободен, и новые операции над регистром Status не приводят к неконтролируемым процессам в порту.
От автора
|
В исходной статье было очень много весьма спорных утверждений и совершенно неграмотных обяъснений. Самые вопиющие "ляпы" я устранил, но по прежнему эта статья остается весьма "делитантской".
|
| |